
Teaching the Nintendo Generation to Program
Mark Guzdial, Elliot Soloway

While the phrase “New Economy” doesn’t hold the same promise that it did for the dot-
commers a couple years ago, we all still recognize that Information Technology has
become the backbone of the world’s economy. The National Science Foundation’s
Information Technology Research program was developed in response to the PITAC
(1999) report which said as much. Even in the down-turned economy, there are still huge
numbers of IT jobs that are going unfilled.

Of course, none of this is news for those of us in the trenches teaching Computer Science.
Our enrollments are bulging at the seams. We can’t get enough faculty to cover the
loads.

Despite those enormous enrollments, there are lots of indications that we’re not doing
enough, or not doing the right things, to meet the demand for a diverse, well-educated,
large workforce of Computer Science professionals. Start asking around—we’re hearing
about drop-out/failure rates in CS1 courses in the 15-30% range. A just published report
in the ACM SIGCSE Bulletin from a working group at ITICSE 2001 this last summer
found shockingly low performance on simple programming problems, even among
second year students, at four schools in three different countries (McCracken et al.,
2001). (These results echo our research from 15 years ago, so it’s not clear that we ever
have figured out how to teach programming.) The American Association for University
Women’s (AAUW) report, Tech-Savvy: Educating Girls in the Computer Age (2000)
points out that large numbers of women drop out or simply fail to enroll in Computer
Science courses because they perceive CS courses to be overly technical, with little room
for individual creativity

Why are we doing such a poor job at getting and keeping students in Computer Science?
Here’s our suggestion: computer science educators are using an out-dated view of
computing and students. We teach computer science in much the same way as we
learned it. We got excited about computer science while learning about laying out
complex patterns of abstract decisions and computations, manipulating invisible data
structures, and finally perhaps printing a number or a phrase. These activities matched
the available computing hardware: The punched card, teletype, and generally text-
focused I/O devices. Printing “Hello, World!” was interactive computing when most of
us were learning to program. And we didn’t get a lot of computer science majors in those
days, either.

But, computing is much different today. The hardware enables us to do much more. In
what follows, then, we propose a new strategy for teaching introductory computer
programming that we believe will attract a group of students that were not excited by the
invisible, abstract, and text world that we grew up with.

ENGAGING THE STUDENTS

Learning scientists have found over-and-over again that engaging the students is critical
to deep learning. Sure, you can get students to memorize just about anything, but if you
want them to understand it, you have to get them to think about it. Engaging students is
critical for them to learn something well enough to use it again in a new situation.

College students today have been called the “Nintendo Generation” or the “MTV
Generation.” Their perception of technology and media has been profoundly influenced
by these sources. The implication has often been that they need to consume mass
quantities of fast-paced sound, graphics, and animation. Perhaps there’s a more critical
implication—that these are the kinds of media that Nintendo Generation students want to
produce when learning Computer Science.

Let’s consider a popular textbook for CS1 today, Deitel & Deitel’s Java: How to
Program (1999). We’re not picking on them but using them as an example. Most CS1
textbooks are fairly similar in terms of their exercises. The first program discussed in
Deitel & Deitel is producing a line of text, akin to “Hello, World.” The second places the
text in a window. The next few produce numeric outputs in windows and then input
numbers and generate calculator types of responses. Would one expect these kinds of
exercises to be the ones to engage the MTV generation? Such exercises are exactly what
the AAUW report describes as “tedious and dull.”1

IT’S ABOUT MEDIA

Today’s desktop computers were invented to be multimedia composition and exploration
devices. The Xerox PARC Learning Research Group believed in a vision of the computer
as a Dynabook: A tool for learning, through creation and exploration of a wide range of
media. Pursuing that vision is what led them to invent the desktop user interface as part
of their programming language, Smalltalk. Alan Kay and Adele Goldberg spelled out
their vision of the Dynabook in a 1977 paper, Personal Dynamic Media, that talked about
students building music, animation, and drawing systems—learning to program through
the creation of media and learning to program in order to create media. Creating media
sounds like what the Nintendo Generation is looking for.

In a lot of ways, that 1977 vision looks even more futuristic today than it did then. Kay &
Goldberg describe animations, music synthesis, and drawing tools that look like what we
have today, but their media were created by students as they were learning to program.
The established practice of having students focus on producing text and the occasional
graphical user interface widget is well-entrenched today. Who teaches CS1 by having
students build animated horse races? Kay & Goldberg did 25 years ago. Ironically, there
are fewer technical barriers to kids programming media today than there were in 1977.
Computers today have magnitudes more zorch. High-resolution displays supporting

1 http://www.aauw.org/2000/techsavvy.html

millions of colors and sound cards with CD quality recording and playback facilities are
the default computing platforms offered at Best Buy and Radio Shack.

One reason for not introducing programming via multimedia construction is the lack of a
good multimedia programming platform. Java is the most popular CS1 programming
language today, but the Java 2 Media Framework is complex and isn’t completely ported
to all operating system platforms. Other popular CS1 languages like C++, Scheme, and
Python offer little support for multimedia, and certainly not for all hardware and
operating system configurations. This lack of support for multimedia might be due to the
perception that multimedia programming is an advanced topic, something that CS1
students might one day aspire to. No one does multimedia first.

But, if the platform does support multimedia – as does Alan Kay et al’s Squeak –
multimedia programming can fit in well within the scope of a CS1 course. Indeed, the
code for creating graphical transitions, for doing cel animations, even for synthesizing
sounds is not all that complicated. We have been using the programming language
Squeak for three years at Georgia Tech with over 100 students per semester (Guzdial,
2001). Squeak (http://www.squeak.org) is a cross-platform multimedia environment that
is the evolution of Smalltalk towards the Dynabook, championed by Alan Kay, Dan
Ingalls, and a large open source community. Students at Georgia Tech use Squeak to
build MPEG movie editors, personalized newspapers built on harvested Web content,
math equation layout editors, and 3-D adventure games. Admittedly, we’re not yet in
CS1—ours is a sophomore requirement. But it’s through our use of Squeak and watching
students rise to the challenge of multimedia programming that we came to the realization
that multimedia-first is a viable way to introduce computing.

EXAMPLE: SOUND SYNTHESIS

Last year, we ran a pilot class on Computer Music Implementation for a dozen
undergraduates so that we could see what a multimedia-first approach might look like.
The easiest way to start with computer music is to record oneself (Squeak provides a
built-in, cross-platform digital recorder), save (name) the sound, and play it back---even
at a different pitch, so that the sound becomes an instrument. This is exactly the
approach of modern sampling keyboards. The musical equivalent to ``Hello, World!'' in
the domain of computer music is (in Squeak) (SampledSound soundNamed:
'mySound') play. To use our recorded sound as an instrument is a simple extension:
((SampledSound soundNamed: 'mySound') pitch: 'c') play.

We can go further down this path by using our sound to play recorded MIDI files. But
let’s take a different path to explore some (slightly) more complex algorithms. We'll use
as an example the creation of sounds via additive synthesis. Additive synthesis is an old
technique for sound synthesis (pre-dates Yamaha synthesizers) which doesn’t generate
very musical sounds. It has the advantage, though, of being understandable and allowing
the users to generate different kinds of sounds with not very much code.

Additive synthesis works by summing sine waves at different frequencies to create new
kinds of sounds. The simplest way to do additive synthesis is the way that it was
invented on early hardware: By stuffing numbers into a buffer and sending the buffer to a
digital-to-audio converter. A Squeak routine (method) for generating a sound buffer with
a given frequency, amplitude (roughly, volume), and duration requires no more than a
simple loop and calculation. The problem requires some trigonometry, but nothing too
complex.

forFreq: freq amplitude: amp duration: seconds
"Generate a monophonic SoundBuffer (array) filled with a
sine wave of the
given frequency (freq),
maximum amplitude (amp), and
duration in seconds (seconds)"

| sr anArray pi interval samplesPerCycle maxCycle rawSample |
sr := SoundPlayer samplingRate. "The Sampling Rate"
anArray := SoundBuffer

newMonoSampleCount: (sr * seconds) . "The array for the sound"
pi := Float pi. "The constant Pi"
interval := 1 / freq. "Time between cycles,

inverse of frequency: seconds per cycle"
samplesPerCycle := interval * sr.

"secs/cycle * samples/second =
samples per cycle"

maxCycle := 2 * pi. "Maximum radians per cycle"

1 to: (sr * seconds) do: [:sampleIndex |
rawSample := "Compute a sound sample value"

((sampleIndex / samplesPerCycle) * maxCycle) sin.
anArray at: sampleIndex

 put: (rawSample * amp) rounded.
"Insert the sample into the sound
at the right amplitude"

].
^ anArray

One doesn’t NEED to understand anything about Squeak to see that this is 10 lines of
code with a single FOR loop in it. To add these sine waves together one simply adds the
values from the sound buffers with the same index values, like this:
combine: soundbuffer1 and: soundbuffer2

"Add two SoundBuffers (arrays) together"

| newsound |
(soundbuffer1 size) = (soundbuffer2 size)

ifFalse: [^self error: 'Sound buffers must be of the same length'].

newsound := SoundBuffer newMonoSampleCount: "The resultant sound"
(soundbuffer1 size).

1 to: (soundbuffer1 size) do: [:index |
"Add up each of the samples"

newsound at: index put:
(soundbuffer1 at: index) + (soundbuffer2 at: index)].

^newsound.

Six lines of code, and we now have an additive sound synthesizer by calling these
methods with appropriate parameters. Based on our experience, we believe that Nintendo
Generation students will prefer learning about array manipulation where the example
results in producing sound as opposed to sorting payroll ID’s or doing linear searches for
student names.
In Squeak, we can not only generate sounds using these 16 lines of code, but we can also
look at the waveforms, play the newly created sounds, and even do Fourier analyses on
them. In our computer music course, we even used Squeak to create the lecture notes,
where we build sounds, listen to them, and analyze them from within a Web browser
(Figure 1).

Squeak has an even more sophisticated multimedia aspects in its base distribution, like
FM Synthesis and Wavelets support, so better (more musical, more sophisticated, more
interesting) computer music is available, too. Thus, along the multimedia spectrum of

computer music, it’s possible to span the easy concepts of “Hello, World!” through
introduction to programming up to serious programming—while engaging a set of
students who are turned off by the text-first view of programming that we emphasize
today.

BACK TO THE FUTURE

We have used “Hello, World!” for the past 25 years because text was the medium that
was easiest to manipulate with the given technology. Today’s technology can manipulate
sound, graphics, and video with the same responsiveness and ease. Today’s technology
produces the media that “kids these days” are consuming. These same kids can produce
their kind of media using today’s technology. In fact, they want to. And they’ll learn
programming to do it.

We are sympathetic to the complexities of really making this “multimedia-first” approach
work. We readily admit that neither University of Michigan nor Georgia Institute of
Technology are we currently following a “multimedia-first” approach in our
instantiations of CS1. But, if we want to attract and keep the MTV/Nintendo Generation
students sitting in our classes, we must reach out and use their media, use their modes of
expression. Interestingly enough, in so doing we can not only teach all the “old concepts”
but we can also be having our students use modern ideas such as Fourier transforms.
And, in using their media we are tacitly saying: we value you and your ideas. Students
won’t miss that gesture. Indeed, they will reciprocate and value more what we are trying
to teach them. In so doing, we will provide alternative paths into computer science for
students who might have turned away from the “Hello, World!” view of computing.

References
AAUW. (2000). Tech-Savvy: Educating Girls in the New Computer Age. New York:
American Association of University Women Education Foundation.
Deitel, H. M., & Deitel, P. J. (1999). Java: How to Program. Upper Saddle River, NJ:
Prentice-Hall.
Guzdial, M. (2001). Squeak: Object-oriented design with Multimedia Applications.
Englewood, NJ: Prentice-Hall.
Kay, A., & Goldberg, A. (1977). Personal dynamic media. IEEE Computer, 31-41.
McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y. B.-D.,
Laxer, C., Thomas, L., Utting, I., & Wilusz, T. (2001). A multi-national, multi-
institutional study of assessment of programming skills of first-year CS students. ACM
SIGCSE Bulletin, 33(4), 125-140.
PITAC. (1999). Information Technology Research: Investing in Our Future: President's
Information Technology Advisory Committee. http://www.ccic.gov/ac/report/

Mark Guzdial (guzdial@cc.gatech.edu) is an Associate Professor in the College of
Computing at the Georgia Institute of Technology. His research focus is in computer-
supported collaborative learning and multimedia composition.

Elliot Soloway (Soloway@umich.edu) is a Professor in the College of Engineering,
School of Information, and School of Education at the University of Michigan. Award by
Students Honoring Outstanding University Teaching (SHOUT), Soloway recently
received the “Golden Apple Teaching Award” at Michigan, the first engineering
professor to receive this University-level award.

